Archive
2014
January
February
March
April
May
June
July
August
September
October
November
2013
January
February
March
April
May
June
July
August
September
October
November
December
2012
January
February
March
April
May
June
July
August
September
October
November
December
2011
January
February
March
April
May
June
July
August
September
October
November
December
2010
January
February
March
April
May
June
July
August
September
October
November
December
2009
January
February
March
April
May
June
July
August
September
October
November
December
2008
January
February
March
April
May
June
July
August
September
October
November
December
2007
January
February
March
April
May
June
July
August
September
October
November
December
2006
March
April
May
June
July
August
September
October
November
December
May. 02, 2011

3-D Print Your Own Tabletop Strandbeest!

by Leslie Taylor

Kinetic sculptor Theo Jansen creates large, intricate, animal-like sculptures he calls 'strandbeests'. He releases them on the beach where they move independently with the wind. And now you can have your very own miniature strandbeest!
Video by loopbeest
Shapeways uses a 3D printer to create small reproductions of Jansen's creations so now you can adopt your own Animaris Geneticus Parvus. The model's movement mechanism is the same as Jansen uses in his larger 'beests'.
On his Web site Jansen describes how he created the strandbeests' leg system using an "evolutionary method":
In the middle of each beach animal is a kind of spine, more specifically a crankshaft. The remarkable thing about this spine is that it can rotate. In the model, my hand turns the crank of the crankshaft. This rotation is converted by 11 small rods into a walking movement drawn by a small pencil at the end of the leg....Of course, I had no idea beforehand which ratio between the lengths I needed for the ideal walking movement. Which is why I developed a computer model to find this out for me.
But even for the computer the number of possible ratios between 11 rods was immense. Suppose every rod can have 10 different lengths, then there are 10,000,000,000,000 possible curves. If the computer were to go through all these possibilities systematically, it would be kept busy for 100,000 years. I didn't have this much time, which is why I opted for the evolutionary method...
Fifteen hundred legs with rods of random length were generated in the computer. It then assessed which of these approached the ideal walking curve. Out of the 1500, the computer selected the best 100. These were awarded the privilege of reproduction. Their rods were copied and combined into 1500 new legs. These 1500 new legs exhibited similarities with their parent legs and once again were assessed on their resemblance to the ideal curve. This process went through many generations during which the computer was on for weeks, months even, day and night.
For a view of the full-size strandbeests in action, visit The Dance of The Strandbeests
About Leslie Taylor

Leslie is the online editor at Workboat.com and NationalFisherman.com. She has a background in oceanography and is passionate about getting non-scientists and young people to realize how cool science can be. She is also Science Friday's former web editor.

The views expressed are those of the author and are not necessarily those of Science Friday.

Science Friday® is produced by the Science Friday Initiative, a 501(c)(3) nonprofit organization.

Science Friday® and SciFri® are registered service marks of Science Friday, Inc. Site design by Pentagram; engineering by Mediapolis.

 

topics