Educate
Science Friday partners with educators and scientists to create free STEM activities, lessons, and resources for all learners.
Make a Chemical Clock
In this activity, students will perform three experiments using household ingredients to observe and record color changes, indicators that a chemical reaction has taken place. Students also will observe a chemical clock reaction and explore how reaction times can be sped up or slowed down.
Lilliputian Landscaping
In this activity, students will examine the different materials gardeners add to their soil, and discuss how these materials are important for plant growth. They will learn how to build a sustainable terrarium by adding a waterbed, mixing their own soil and transplanting a small plant into their terrarium.
Lighting Up Celery Stalks
In this activity, students will conduct a series of hands-on experiments that will demonstrate how the working of these veins, known as capillary action, enables water to travel throughout the length of a plant. Students will learn how the forces of water cohesion and adhesion contribute to the process of capillary action.
Best Bubbles
Astronauts are allowed to bring special “crew preference” items when they go up in space. NASA astronaut Don Pettit chose candy corn for his five and a half month stint aboard the International Space Station. But these candy corn were more than a snack; Pettit used them for experimentation.
Cooking with Chemistry
Chef Wylie Dufresne, the owner of New York City restaurant wd~50, experiments with food, literally. He has lab notebooks detailing what certain chemicals do to certain dishes. One of his signature dishes is a spin on eggs Benedict: he found that creating the plate’s centerpiece–a cube of fried hollandaise sauce–required a lot of scientific testing. Science Friday stopped in at Dufresne’s kitchen to see how he prepares the dish.
Sublime Sublimation
Looking for ways to jazz up your party? Patrick Buckley, co-author of The Hungry Scientist Handbook, demonstrates how to make carbonated fruit. Materials required: fruit (the firmer the better), a pressure cooker and a handful of dry ice cubes. Note: This lesson provides a great introduction to another Teachers TalkingScience lesson, Capturing Carbon Dioxide.
Capturing Carbon Dioxide
Basalt formations off the East Coast of the U.S. could hold a billion of tons of carbon dioxide, according to a new study in the Proceedings of the National Academy of Sciences. Paul Olsen, of Columbia University’s Lamont-Doherty Earth Observatory, takes us to a basalt quarry in New Jersey and explains what makes the rock ideal for soaking up emissions. Note: Another Teachers TalkingScience lesson, Sublime Sublimation, makes an excellent introduction to Capturing Carbon Dioxide, and to carbon dioxide itself.
Testing The Waters
Think oysters are good on the half shell? They may be even better whole. Oysters can restore marine habitats by cleaning water, creating homes for other sea life and preventing coastal erosion. But oyster populations around the world have declined, experts say. Find out how scientists in New York are working to replenish oyster populations in the waters around the city.
Sound Science
Sound is all around us. Everything we hear in our day-to-day lives has a distinctive sound, from the jingling of keys to the tapping of footsteps in a hallway. Sound is created when objects vibrate. These vibrations cause the air around them to vibrate, sending sound waves in various directions. Some objects tend to vibrate at a specific rate. This is known as their resonant frequency. In this activity, students will explore the vibrating nature of sound and how it travels from molecule to molecule.
What is Nanotechnology?
Nanotechnology is the study of what happens when things get very, very small – only a few atoms in size. The word “nanometer” means one billionth of a meter, perhaps five or six atoms long. At the nanoscale, materials can have very different physical or chemical properties, even though they are the same. In particular, super thin films of material, only a few nanometers thick, can cause interference within light reflecting off them, resulting in beautiful displays of colors.